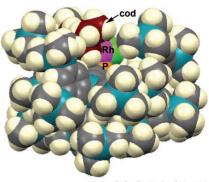
Spotlights ...

Phosphine Ligands


A. Ochida, M. Sawamura*

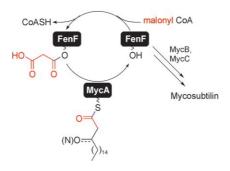
Phosphorus Ligands with a Large Cavity: Synthesis of Triethynylphosphines with Bulky End Caps and Application to the Rhodium-Catalyzed Hydrosilylation of Ketones

Chem. Asian J.

DOI: 10.1002/asia.200700006

Holey phosphines! The end capping of triethynylphosphine with bulky groups results in the creation of ligands with a large cavity in which the phosphorus lone-pair electrons are located. The novel coordination properties of these ligands lead to a rate-accelerating effect in the rhodium-catalyzed hydrosilylation of ketones. cod = 1,5-cyclooctadiene.

[(Ar₃SiC≡C)₃P-RhCl(cod)]


Biosynthesis

Z. D. Aron, P. D. Fortin, C. T. Calderone, C. T. Walsh*

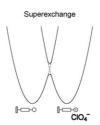
FenF: Servicing the Mycosubtilin Synthetase Assembly Line in trans

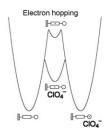
ChemBioChem

DOI: 10.1002/cbic.200600575

AT your service. We report the expression and characterization of FenF from mycosubtilin biosynthesis. This work represents the first kinetic and selectivity studies performed on an in trans AT domain servicing a polyketide synthase (PKS), and revealed a strong acyl-group specificity and broad promiscuity toward substrate carrier proteins. The lack of specificity in FenF-mediated malonyl transfer suggests that this protein might prove a powerful tool for combinatorial biosynthesis.

Electrochemistry


C. Amatore,* E. Maisonhaute, B. Schöllhorn, J. Wadhawan


Ultrafast Voltammetry for Probing Interfacial Electron Transfer in Molecular Wires

Chem Phys Chem

DOI: 10.1002/cphc.200600774

Up to speed: Electron transfer in selfassembled monolayers of complex redoxactive oligophenylenevinylene molecular wires is examined by ultrafast cyclic voltammetry. If the redox center is buried within long hydrophobic diluents, counterion movement towards the redox entity becomes rate-limiting. This effect is examined for superexchange and electron-hopping mechanisms (see picture).

PPAR Agonists

G. Fracchiolla, A. Laghezza, L. Piemontese, G. Carbonara, A. Lavecchia,* P. Tortorella, M. Crestani, E. Novellino, F. Loiodice*

Synthesis, Biological Evaluation, and Molecular Modeling Investigation of Chiral Phenoxyacetic Acid Analogues with PPARα and PPARγ Agonist Activity

ChemMedChem

DOI: 10.1002/cmdc.200600307

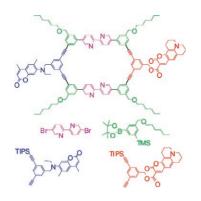
A = NH, O, S B = alkyl or alkyloxy chain

A series of chiral 4-chlorophenoxyacetic acid analogues was synthesized and tested for activity toward both $\mathsf{PPAR}\alpha$ and PPARγ. Some derivatives were potent PPAR α agonists as well as PPAR γ agonists. Docking experiments were performed to explain the influence of the absolute configuration on PPARlpha activity.

... on our Sister Journals

Angewandte Chemie

Three new organoboron complexes with anilido-imine ligands were synthesized. All complexes were characterized by ¹H, ¹¹B, ¹³C and ¹⁹F NMR spectroscopy, X-ray crystallography, elemental analyses and mass spectrometry. These complexes show excellent luminescent properties.


Organoboron Complexes

Y. Ren, X. Liu, W. Gao, H. Xia, L. Ye, Y. Mu*

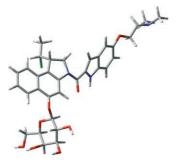
Boron Complexes with Chelating Anilido-Imine Ligands: Synthesis, Structures and Luminescent Properties

Eur. J. Inorg. Chem.

DOI: 10.1002/ejic.200600841

A flexible route to shape-persistent macrocycles based upon a collection of building blocks is reported. An easy introduction of several different functional units at predetermined positions as well as the obtainment of cycles in high isolated yields were accomplished by copper-free Sonogashira cross-coupling reactions and gel-permeation chromatography.

Shape-Persistent Macrocycles


J. Sakamoto, A. D. Schlüter*

Shape-Persistent Macrocycles: A Synthetic Strategy that Combines Easy and Site-Specific Decorations with Improved Cyclization Efficiency

Eur. J. Org. Chem.

DOI: 10.1002/ejoc.200700118

Glycosidic prodrugs: A novel class of β-D-galactosidic prodrugs based on the cytotoxic antibiotics CC-1065 and the duocarmycins were synthesized for an antibody directed enzyme prodrug therapy (ADEPT) for a selective treatment of cancer. Subsequent in vitro cytotoxicity tests of the illustrated β-D-galactosidic prodrug against the human bronchial carcinoma cell line A549 show an excellent QIC₅₀ value thus exceeding all prodrugs of this type prepared to date by us and others.

Antitumor Agents

L. F. Tietze,* F. Major, I. Schuberth, D. A. Spiegl, B. Krewer, K. Maksimenka, G. Bringmann, J. Magull

Selective Treatment of Cancer: Synthesis, Biological Evaluation and Structural Elucidation of Novel Analogues of the Antibiotic CC-1065 and the Duocarmycins

Chem. Eur. J.

DOI: 10.1002/chem.200700113

On these pages, we feature a selection of the excellent work that has recently been published in our sister journals. If you are reading these pages on a computer, click on any of the items to read the full article. Otherwise please see the DOIs for easy online access through Wiley InterScience.